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1. Introduction

The (3 + 1)-dimensional N = 4 SU(N) supersymmetric Yang-Mills theory broken to

U(1)N−1 can be studied as an effective field theory on N parallel D3-branes [1]. The

existence of three strings junction connecting 3 parallel D3-branes was first conjectured

in [2]. Subsequently, in [4] planar three strings junction have been found in explicit form.

These states preserve 1/4 of the supersymmetries and correspond to static BPS spherically

symmetric solutions of SU(3) Yang-Mills-Higgs theory. In [3], a class of static non-BPS

dyon solutions of the aforementioned model has been derived which describes non-planar

string junctions connecting N D3-branes. The solutions are spherical symmetric with

electric charge determined by the Higgs vacuum expectations values (vevs).

In this paper, we extend this work by coupling the model with the Einstein gravity

and construct the corresponding gravitating globally regular and black hole solutions. In

the latter case, the strings meet at the horizon of the black hole and therefore, the string

spectrum does not consists of junctions. Recall that, black holes that are solutions of

supersymmetric theories can be associated with solitons [5].

From a complementary point of view one expects to obtain these BPS and non-BPS

solutions from the supergravity equations of motion for any BPS and non-BPS state in the

spectrum. The simplest BPS solutions of this kind are spherically symmetric black hole

solutions of N = 2 theories [6] and there existence strongly depends on the value of the

charges and vacuum moduli [7]. Non-BPS composites could also exist [8]; however this is

still an open question.
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2. The model

We consider a model in (3 + 1) dimensions which consists of the Einstein-Hilbert action

and the N = 4 SU(N) supersymmetric Yang-Mills action [9],

S =

∫ 

 1

16πG
R + tr




κ1FµνFµν + κ2

6∑

I=1

DµΦIDµΦI + κ3

6∑

I,J=1

[ΦI ,ΦJ ]2








√−g d4x.

(2.1)

Here ΦI , I = 1, . . . , 6 denote the six Higgs scalars, with covariant derivatives defined by:

DµΦI = ∂µΦI − i[Aµ,ΦI ], Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], R is the scalar curvature, and

g is the determinant of the metric. G denotes the gravitational coupling parameter and

the constants κi are fixed as: κ1 = −1
2 , κ2 = −1, κ3 = 1

2 . In flat space this model can be

considered as a dimensional reduction of the (4 +n)-dimensional Yang-Mills theory, where

n is the number of the extra dimensions and is (also) equal to the number of the Higgs

fields of the (3 + 1)-dimensional N = 4 SU(N) supersymmetric Yang-Mills model.

For simplicity, we use the coordinates r, z, z̄ on R
3 where in terms of the usual spherical

coordinates r, θ, φ the Riemann sphere variable z is given by z = eiφ tan(θ/2). Then the

Schwarzschild-like metric becomes

ds2 = −A2(r)B(r) dt2 +
1

B(r)
dr2 +

4r2

(1 + |z|2)2 dzdz̄, B(r) = 1 − 2m(r)

r
, (2.2)

where A(r) and B(r) are real functions and depend only on the radial coordinate r, and

m(r) is the mass function. The (dimensionfull) mass of the solution is m∞ ≡ m(∞) and

the square-root of the determinant is

√−g = iA(r)
2r2

(1 + |z|2)2 . (2.3)

Also, the Einstein equations simplify to:

2

r2
m′ = −8πGT 0

0 ,
2

r

A′

A
B = −8πG

(
T 0

0 − T r
r

)
(2.4)

where prime denotes the derivative with respect to r and Tµν = gµνLM − 2(∂LM/gµν) is

Tµν = tr
(
κ1(gµνFαβFαβ − 4gαβFµαFνβ)

)

+κ2

6∑

I=1

(
−2DµΦIDνΦ

I + gµνDα ΦIDαΦI
)

+ κ3gµν

6∑

I,J=1

[ΦI ,ΦJ ]2 . (2.5)

The harmonic map ansatz to obtain SU(N) dyons [3] is of the form

ΦI =

N−2∑

j=0

βI
j

(
Pj −

1

N

)
, A0 =

N−2∑

j=0

δj

(
Pj −

1

N

)
, Az = i

N−2∑

j=0

γj[Pj , ∂zPj ], Ar = 0.

(2.6)
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Here βI
j (r), γj(r), δj(r) are real functions depending only on the radial coordinate r, and

Pj(z, z̄) are N ×N hermitian projectors independent of r and orthogonal i.e. PiPj = 0 for

i 6= j. Note that we are working in a real gauge, so that Az̄ = A†
z.

The orthogonality of the projectors Pj means that the Higgs fields ΦI are mutually

commuting, i.e. [ΦI ,ΦJ ] = 0, so they are simultaneously diagonalizable and this allows the

eigenvalues to be interpreted as the positions of the strings in the transverse space.

The explicit form of the projectors is given as follows. Let f be the holomorphic vector

f = (f0, . . . , fj, . . . , fN−1)
t, where fj = zj

√(
N − 1

j

)
(2.7)

and
(
N−1

j

)
denote the binomial coefficients. Define the operator ∆, acting on a vector

h ∈ C
N as

∆h = ∂zh − h (h† ∂zh)

|h|2 (2.8)

then Pj is defined as

Pj =
(∆jf)(∆jf)†

|∆jf |2 . (2.9)

The particular form of these projectors corresponds to the requirement that the associated

dyons are spherically symmetric (see [10] for more details).

It is convenient to make a change of variables to the following linear combinations

βI
j =

N−2∑

k=j

bI
k, cj = 1 − γj − γj+1, δj =

N−2∑

k=j

dk, for j = 0, . . . , N − 2 (2.10)

where we have defined γN−1 = 0.

The magnetic charges, nk, for k = 1, . . . , N − 1, can be read off from the large r

behaviour of the magnetic field

Bi =
1

2
εijk Fij

∼ x̂i

2r2
G (2.11)

where G is in the gauge orbit of

G0 = diag(n1, n2 − n1, . . . , nN−1 − nN−2, −nN−1). (2.12)

In the case of maximal symmetry breaking, which we shall consider here, they are given

by [3]

nk = k(N − k), k = 1, . . . , N − 1. (2.13)

Similarly, the large r asymptotic of the electric field

Ei ∼
x̂i

2r2
A0 (2.14)
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allows the electric charges (which classically are real-valued) to be found from

A0 =
N−2∑

j=0

2

(
Pj −

1

N

)
(r2δj

′)|r=∞ (2.15)

i.e. the electric charges are related to the 1/r coefficients of δj in a large r expansion.

After some algebra, it can be shown that substitution of (2.6) for N = 3 into the

energy-momentum tensor leads to

T 0
0 − T r

r =
8κ1

BA2r2

(
c2
0d

2
0 + c2

1d
2
1

)
+

8κ1B

r2

(
c′20 + c′21

)

+
4κ2B

3

∑

I

(
(bI

0)
′2 + (bI

1)
′2 + (bI

0)
′(bI

1)
′
)

(2.16)

T 0
0 =

4κ1B

r2

(
c′20 + c′21

)
+

4κ1

BA2r2

(
c2
0d

2
0 + c2

1d
2
1

)
+

2κ2

r2

∑

I

(
c2
0(b

I
0)

2 + c2
1(b

I
1)

2
)

+
4κ1

3A2

(
d′20 + d′21 + d′0d

′
1

)
+

2κ2B

3

∑

I

(
(bI

0)
′2 + (bI

1)
′2 + (bI

0)
′(bI

1)
′
)

+
4κ1

r4

[
(1 − c2

0)
2 + (1 − c2

1)
2 − (1 − c2

0)(1 − c2
1)

]
, (2.17)

while variation of the energy density with respect to matter fields leads to the following

system of ODE’s

1

A

(
ABr2 bI

0
′
)′

= 2
(
2c2

0b
I
0 − c2

1b
I
1

)

1

A

(
ABr2 bI

1
′
)′

= 2
(
2c2

1b
I
1 − c2

0b
I
0

)
(2.18)

BA

(
r2

A
d0

′

)′

= 2
(
2c2

0d0 − c2
1d1

)

BA

(
r2

A
d1

′

)′

= 2
(
2c2

1d1 − c2
0d0

)
(2.19)

1

A

(
AB c′0

)′
= c0

[
1

r2
(2c2

0 − c2
1 − 1) +

1

BA2
d2
0 +

κ2

2κ1

∑

I

(bI
0)

2

]

1

A

(
AB c′1

)′
= c1

[
1

r2
(2c2

1 − c2
0 − 1) +

1

BA2
d2
1 +

κ2

2κ1

∑

I

(bI
0)

2

]
, (2.20)

with the appropriate boundary conditions due to the finiteness of the energy density.

Since we restrict to maximal symmetry breaking SU(3) → U(1)2, (i.e. to three D3-

branes being distinct in transverse space), the boundary conditions on cj(r) are: cj(∞) = 0

where j = 0, 1. The remaining free parameters: bI
j(∞), determine the vevs of the Higgs

scalars since the ansatz (2.6) along the positive x3-axis (that is, by setting z = 0) under

the change of variables (2.10), results in

ΦI(r) =
1

3
diag(2bI

0 + bI
1,−bI

0 + bI
1,−bI

0 − 2bI
1) (2.21)
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from which the Higgs vevs can be read off in terms of bI
j (∞).

By writing the components of (2.21) as

ΦI(r) = diag(ΦI
1(r),Φ

I
2(r),Φ

I
3(r)) (2.22)

the positions of the three D3-branes in the two-dimensional transverse space are given by

(x4
α, x5

α) = (Φ1
α(∞),Φ2

α(∞)) for α = 1, 2, 3, (2.23)

while their values for different r correspond to the positions of the strings which form the

string junction and end on the D3-branes. (More details in section 3).

For globally regular solutions the boundary conditions of the matter profile functions

are:

di(r = 0) = 0, ci(r = 0) = 1, bI
i (r = 0) = 0, m(r = 0) = 0, i = 0, 1, (2.24)

and describe a string junction formed at the origin. However, black holes possess an event

horizon at r = rH determined by: B(rH) = 0, or (equivalently) by: m(rH) = rH/2. The

horizon radius is a singular point of the differential equations and so, regularity of the

solutions (due to (2.16)), impose the following boundary conditions:

di(rH) = 0, i = 0, 1. (2.25)

In what follows we consider only purely magnetic solutions i.e. A0 = 0 which implies that

di(r) = 0, for i = 0, 1. Then eqs. (2.18) and (2.20) evaluated at r = rH yield

[
2
(
2c2

0b
I
0 − c2

1b
I
1

)
− r2B′bI

0
′
]

H
= 0

[
2
(
2c2

1b
I
1 − c2

0b
I
0

)
− r2B′bI

1
′
]

H
= 0 (2.26)

[
c0

{
1

r2
(2c2

0 − c2
1 − 1) +

κ2

2κ1

∑

I

(bI
0)

2

}
− B′c′0

]

H

= 0

[
c1

{
1

r2
(2c2

1 − c2
0 − 1) +

κ2

2κ1

∑

I

(bI
1)

2

}
− B′c′1

]

H

= 0, (2.27)

respectively.

3. Numerical simulations

Next we study the deformation of the classical soliton solutions of N = 4 supersymmetric

Yang-Mills equations to gravitating ones and black holes. In particular, we investigate the

deformations as the gravitational parameter α =
√

4πG goes from zero to its maximum

value. In this paper the asymptotic values of the Higgs field are fixed, i.e.

b1
0 = −3/4, b1

1 = 1/4, b2
0 = b2

1 = −1/3. (3.1)

– 5 –
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3.1 Globally regular solutions

Globally regular solutions describe self-gravitating monopoles. A heuristic argument [11,

12] suggests that they cannot persist if the coupling to gravity becomes too strong; i.e. for

α of order one.

In particular, as α departs from zero a first branch of solutions emerges from the flat

space monopole. When α reaches its maximal value: αmax ≈ 1.349 the first branch merges

with a second one which bends back to a critical value αcr ≈ 1.345. The mass of the

second branch is slightly larger than of the first one, indicating an instability. On the

second branch, when α → αcr the minimum of B(r) tends to zero and so a degenerate

horizon is formed at: rdeg = 2αcr. In this limit the solution consists of an abelian part

in the outside region rdeg < r < ∞, where the metric coincides with that of the extreme

Reissner-Nordström black hole of charge two, the gauge functions c0(r) and c1(r) vanish

identically and the Higgs functions bI
0(r) and bI

1(r) are constant; and of a non-abelian part

in the inside region 0 ≤ r < rdeg, where the functions interpolate continuously between

their values at the origin and at rdeg. As in [11, 12], the appearance of a double zero of

B implies that the degenerate horizon is at an infinite physical distance from the origin,

which means that the monopole is located inside the degenerate horizon.

These results are similar to the gravitating monopoles of SU(2) Einstein-Yang-Mills-

Higgs theory which have been discussed extensively in [11, 12]. In figure 1 we plot the

strings in the x4 − x5 plane for several values of α and observe that they do not change

considerably as α increases from zero to one. Even for greater values of α the strings are

deformed only slightly.

3.2 Black hole solutions

Next we study the construction of black hole solutions where three special cases arise.

Case I describes embedded abelian solutions and occurs when c0(r) = c1(r) = 0; Case

II describes embedded non-abelian solutions with gauge group SU(2) × U(1) and occurs

when either c0(r) = 0, c1(r) 6= 0 (IIa) or c0(r) 6= 0, c1(r) = 0 (IIb); and Case III describes

genuine non-abelian SU(3) solutions and occurs when both c0(r) and c1(r) are different

from zero.

The numerical simulations show that: in case I and II the presence of abelian gauge

fields impose a lower bound in the size of the black holes which can not be arbitrarily small;

while in case II and III black holes cannot become arbitrarily large since (heuristically) their

radius cannot exceed the radius of the non-abelian core of the monopole.

3.2.1 Case I

When c0(r) = c1(r) = 0 the Higgs profile functions are constant bI
0(r) = bI

0(∞), bI
1(r) =

bI
1(∞) while the metric ones become

m(r) = m∞ − α2

2

4

r
,

A(r) = 1. (3.2)

– 6 –



J
H
E
P
0
1
(
2
0
0
6
)
0
3
2
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-0.2

-0.1
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 0.2

 0.3

-0.4 -0.2  0  0.2

x5

x4

α=0.0

α=1.0

α=1.3
αcr

Figure 1: Three strings junction with boundary conditions given by (3.1) for several values of the

gravitational coupling parameter.

where m∞ is an integration constant. The solution corresponds to the Reissner-Nordström

one with mass m∞, charge two and event horizon given by: rH = m∞+
√

m2
∞ − 4α2. Note

that, the black holes exist for rH ≥ 2α and the equality holds for the extremal case. Figure 2

presents the domain of existence of the black holes in the α − rH plane and indicates that

charge two Reissner-Nordström black holes exist for any α and rH above the thick dashed

line rH = 2α.

3.2.2 Case II

Cases IIa and IIb are equivalent due to the symmetry of field equations under the inter-

change (c0, b
I
0) ↔ (c1, b

I
1), (therefore, we concentrate on case IIa). When c0 = 0 eqs. (2.18)

are combined to a single one which after integration simplify to

2bI
0
′
+ bI

1
′
=

const

ABr2
. (3.3)

However, at the horizon B(rH) = 0 and thus for regular solutions, the constant has to

vanish i.e.

bI
0(r) = −1

2
bI
1(r) +

1

2

[
2bI

0(∞) + bI
1(∞)

]
. (3.4)

By setting c1(r) = w(r)/
√

2 and bI
1(r) = hI(r) the remaining differential equations reduce

to

(
ABr2 hI ′

)′

= 2w2hIA (3.5)

– 7 –
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 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5

r H

α

rH=  3α

rH=2α

case I

case III

case II

rH
(cr)

rH
(1)

rH
(2)

 1.92

 1.96

 2

 2.04

 0.96  1  1.04

 

 

case II

Figure 2: The domain of existence of black holes with boundary conditions given by (3.1).

(
AB w′

)′
= w

[
1

r2
(w2 − 1) +

∑

I

(hI)2

]
A (3.6)

m′ = α2

{
Bw′2 +

∑

I

w2(hI)2 +
B

2

∑

I

r2(hI)′
2
+

1

2r2

[
(1 − w2)2 + 3

]
}

(3.7)

A′ =
2α2

r
A

{

w′2 +
1

2

∑

I

r2(hI)′
2

}

, (3.8)

which is the Einstein-Yang-Mills-Higgs system with gauge group SU(2) × U(1); multiple

Higgs fields; and magnetic charge Q =
√

3 (due to the U(1) field).

Next, we argue why the black hole solutions of eqs. (3.5)–(3.8) exist only if rH ≥
√

3α,

as shown in figure 2: The constraint B′(rH) ≥ 0 is true since otherwise B(r) would be

negative near the horizon for r > rH and equal to zero at some point r0 (due to the

asymptotic value B(∞) → 1). But such a point is a singular point of the equations of

motion and therefore, a smooth solution is not guaranteed. Applying the above constraint

in (3.7) gives the inequality

1 − 3α2

r2
H

≥ 2α2

{
∑

I

w2
H(hI

H)2 +
1

2r2
H

[
(1 − w2

H)2
]
}

. (3.9)

However, the right-hand side is non-negative implying that rH ≥
√

3α and therefore, no

globally regular solutions exist in case II. Remark: note that in both cases I and II the

lower bound of the horizon radius: rH ≥ Qα, is a consequence of the presence of an abelian

field.

– 8 –
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In addition, in case II an upper bound on black holes also exists. Figure 2 indicates that

for fixed α ≤ 0.959 and varying rH a first branch of solutions extends up to the maximal

value r
(1)
H (α), where it merges with a second branch which bends back to the critical value

r
(cr)
H (α) and finally bifurcates with the abelian Reissner-Nordström solution of case I. The

curves r
(1)
H (α) and r

(cr)
H (α) are presented by the dash-dotted and solid lines, respectively,

in figure 2.

Moreover, as shown in the inlet of figure 2, for 0.959 < α < 1.044 three branches of

solutions exist. The first and second branch merge at r
(1)
H (α), while the second and third

branch merge at r
(2)
H (α) < r

(1)
H (α) and the third one finally terminates at r

(cr)
H (α). The

curves r
(1)
H (α) and r

(2)
H (α) merge at α = 1.044 while for larger values of α only one branch of

solutions exists up to r
(cr)
H (α). Note that, the upper r

(cr)
H (α) and lower bound rH =

√
3α of

the horizon radius coincide at some value of the gravitational parameter α = αmax
II ≈ 1.235

above which no case II black hole solutions exist.

At the critical radius r
(cr)
H (α) a bifurcation with the Reissner-Nordström solution of

case I occurs only when α ≤ α∗
II = 1.02. For α > α∗

II , the branches terminate since a

degenerate horizon is formed. In the limit rH → r
(cr)
H (α) the local minimum of the metric

function B becomes equal to zero at rdeg = 2α. The limiting solution can be described as

follows: for r > rdeg the metric and gauge potential correspond to an extremal abelian black

hole with magnetic charge two and constant Higgs field. However, inside the degenerate

horizon rH ≤ r < rdeg a non-abelian core persists. The formation of the degenerate horizon

is similar to the one of the globally regular solutions, discussed in section 3.1.

In order to understand the transition to abelian black holes on a qualitative level, one

can consider the monopole as an extended object with a black hole inside the non-abelian

core. When the black hole becomes larger than the monopole core, the non-abelian fields

outside the horizon can not persist any more and transform to abelian ones. The presence

of different branches of solutions indicates the existence of instability, i.e. solutions with

the largest masses are less stable. Figure 3 demonstrates the bifurcation with the abelian

solution of case I and presents the mass of the solutions in all cases for α = 0.5.

The functions B(r), A(r), f(r), h1(r) and h2(r) are plotted in figures 4a–4d for different

values of the horizon radius when α =
√

1.3. These functions are plotted in the region

r ∈ [rH, 3] so that the formation of the horizon is demonstrated.

3.2.3 Case III

For the genuine SU(3) black holes no abelian gauge field is present and therefore, no

lower bound on the horizon radius exists. Indeed, for vanishing horizon radius the black

hole solutions tend pointwise to the globally regular solutions. However, as in case II,

the solutions bifurcate with non-extremal black holes when α is small; while a degenerate

horizon is formed for large values of α with transition point at: α∗
III ≈ 0.787.

Let us consider first the case α < α∗
III . For α small, a first branch of black hole

solutions emerges from the globally regular solutions with increasing horizon radius which

merges with a second branch at the maximal value r
(1)
H (α), and then bends back to a critical

value r
(cr)
H (α). At this critical value the second branch bifurcates with the first branch of
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Figure 3: The mass of the black hole solutions of case I, II and III as function of rH for α = 0.5.

(Asterisk indicates the bifurcation point.)

case II (in contrast with the abelian solutions of case II), as demonstrated in figure 3.

Similarly with case II, three branches of solutions exist for 0.74 ≤ α ≤ 0.766 and (only)

one for 0.766 ≤ α ≤ α∗
III ; which bifurcate with the case II ones at the limit: rH → r

(cr)
H (α).

The transition to the SU(2) × U(1) black hole solutions of case II can be explained

by the following argument: the Higgs fields at infinity define two vector boson masses and

core radii m2
0 =

[
(b1

0)
2 + (b2

0)
2
]
∞

, R0 = 1/m0 and m2
1 =

[
(b1

1)
2 + (b2

1)
2
]
∞

, R1 = 1/m1,

leading to the exponential decay of c0 and c1, respectively. Since m0 > m1 (due to (3.1)),

c0 is essentially zero outside R0 where SU(3) breaks to SU(2)×U(1). Consequently, if the

horizon radius is of the order of R0, an SU(2) gauge field and a U(1) field exists outside

the horizon.

For α > α∗
III two distinguished cases exist when either α ≤ αmax

II or α ≥ αmax
II .

In the first case, only one branch of solutions exists which terminates at rH = r
(cr)
H (α)

and a degenerate horizon forms at rdeg =
√

3α. The limiting solution coincides with the

extremal case II solution in the outside region r >
√

3α when: c0(r) = 0, c1(r) = w(r),

2bI
0(r) + bI

1(r) = const, bI
1(r) = hI(r) and B(r) = A(r). In the inside region r <

√
3α,

the functions c0(r) and 2bI
0(r) + bI

1(r) are non-trivial; and the situation is similar to the

solutions of case II when the extremal abelian solution is replaced by the extremal case

II solution. Thus, we see again that a horizon is formed at rdeg when the monopole core

becomes too massive. However, for the genuine SU(3) solutions there is (still) a non-abelian

gauge field outside rdeg due to the lighter mass m1.

In the second case the extremal case II solutions do not exist since α > αmax
II . In fact

as the horizon radius tends to r
(cr)
H (α), a degenerate horizon forms at rdeg = 2α. In this
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Figure 4: The metric functions B(r) (upper left), A(r) (upper right), the gauge field function f(r)

(lower left) and the Higgs field functions h1(r), h2(r) (lower right) in terms of rH and α =
√

1.3.

limit the solution in the outside region is abelian with magnetic charge two; while in the

inside region is non-abelian (as case II). For larger values of α, two branches of solutions

exist which m erge at some r
(1)
H (α); while a degenerate horizon forms on the second branch

as rH → r
(cr)
H (α). There are no genuine non-abelian black hole solutions for α > αmax.

4. String junction

Recall that the vevs of the Higgs fields determine the position of the strings in transverse

space due to (2.23). For globally regular solutions the Higgs functions vanish at the origin

and the three strings are joint in transverse space. However, in black holes the origin is

replaced by their horizon and thus the strings are not connected in general.

Next we discuss the string interpretation of our solutions in all three cases:

Case I is the simplest one since the symmetry breaking is U(1)2. The Higgs field equals

its vacuum value everywhere in space and so the strings degenerate to a point on the brane.

In case II, the symmetry breaking is SU(2) × U(1) and thus the Higgs functions are

linearly dependent as shown in (3.4). So the first string degenerates to the point

(x4
1, x

5
1) =

(
1

3

(
2b1

0(∞) + b1
1(∞)

)
,
1

3

(
2b2

0(∞) + b2
1(∞)

))
(4.1)
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radius rH/
√

3α for α = 1.225, 1, 3/4.

since one of the branes decouples when the non-abelian symmetry group is reduced from

SU(3) to SU(2). Recall that in case IIa, the Higgs profile functions are related since

h1(r)/h1(∞) = h2(r)/h2(∞) (4.2)

which implies that x5
a is a linear function of x4

a, for a = 2, 3. Therefore, the strings 2 and

3 form straight lines in transverse space connecting the branes at
(
x4

a(∞), x5
a(∞)

)
to the

point
(
x4

a(rH), x5
a(rH)

)
.

Figure 5 presents the string coordinates at the horizon (x4
i , x

5
i )|rH

(for i = 1, 2) as

functions of rH when α = 1.225, 1, 0.75 and shows that the strings are not joint in the

non-extremal case since
(
x4

2, x
5
2

)
|rH

6=
(
x4

3, x
5
3

)
|rH

for rH >
√

3α. However, in the extremal

case rH =
√

3α the strings 2 and 3 are jointed at the horizon since bI
1(rH) = 0.

Next we investigate the consequences of the transition to abelian black holes when α ≤
α∗

II and the formation of a degenerate horizon when α > α∗
II . Figure 5 shows that for α ≤

α∗
II the coordinates x4

2,H, x5
3,H increase monotonously with rH up to a maximal value where

the transition to abelian black holes occurs. (Similarly, x5
2,H, x4

3,H decrease monotonously).

At the transition point the coordinates (x4
a,H, x5

a,H) are equal to (x4
a(∞), x5

a(∞)) — hence

the strings degenerate to points on the branes. Non-degenerate strings cannot exist for

black holes larger than the non-abelian core. For α > α∗
II a degenerate horizon forms

outside the non-abelian core when rH → r
(cr)
H and the strings stretch between the (event)

horizon and the degenerate one.

In case III, the strings do not degenerated at a point as shown in figure 6 where the

x4 − x5 plane for rH = 0.1, 1 and α = 1.0 is plotted. However, the separation of the end

– 12 –



J
H
E
P
0
1
(
2
0
0
6
)
0
3
2

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.4 -0.2  0  0.2

x5

x4

α=1.0

s1

s3

s2

rdeg

rH=0.1

rH=1.0

rH=rH
cr

-0.08

 0

 0.08

-0.08  0  0.08

 

 

Figure 6: Case III three strings in the x4 − x5 plane for rH = 0.1, 1.0, r
(cr)
H and α = 1.

points at the horizon gets smaller for small horizon radius, and the strings joint as the

black hole solutions approach the globally regular solutions (in the limit of a vanishing

horizon radius). Similarly to case II, for α ≤ α∗
III the SU(3) black holes bifurcate with

non-extremal SU(2) × U(1) black holes which implies that one string degenerates to a

point, while the others are associated with the gauge group SU(2). On the other hand,

for α∗
III < α ≤ αmax

II , a degenerate horizon forms at rdeg leaving three non-degenerate

strings in the inside and two strings in the outside region as demonstrated in figure 6.

(Note that, the existence of the string in the outside region is due to the presence of the

non-abelian SU(2) gauge fields). In fact, since (in the outside region) the solutions form

extremal SU(2)×U(1) black holes the two non-degenerate strings s2 and s3 are joint at rdeg

and form a straight line, whereas string s1 degenerates to a point. Finally, for α > αmax
II

there are no non-abelian gauge fields outside the degenerate horizon and so, the strings

(in the outside regions) are degenerated to points. In contrast, in the inside region three

non-degenerated strings persists.

5. Extreme SU(4) black hole solutions

In section 3.2.2 it was shown that a special case occurs when one of the gauge functions

becomes zero leading to SU(2) × U(1) solutions with an additional magnetic charge. Here

we extend this work in the SU(4) case to construct SU(3) × U(1) solutions.

The energy-momentum tensor, for purely magnetic gauge potential, is

T 0
0 − T r

r =
4κ1B

r2

(
3c′20 + 4c′21 + 3c′22

)
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+2κ2B
∑

I

(
3

4
(bI

0)
′2 + (bI

1)
′2 +

3

4
(bI

2)
′2 + (bI

0)
′(bI

1)
′ +

1

2
(bI

0)
′(bI

2)
′ + (bI

1)
′(bI

2)
′

)

T 0
0 =

2κ1B

r2

(
3c′20 + 4c′21 + 3c′22

)
+

κ2

r2

∑

I

(
3c2

0(b
I
0)

2 + 4c2
1(b

I
1)

2 + 3c2
2(b

I
2)

2
)

+κ2B
∑

I

(
3

4
(bI

0)
′2 + (bI

1)
′2 +

3

4
(bI

2)
′2 + (bI

0)
′(bI

1)
′ +

1

2
(bI

0)
′(bI

2)
′ + (bI

1)
′(bI

2)
′

)

+
2κ1

r4

(
9

2
c4
0 + 8c4

1 +
9

2
c4
2 − 3c2

0 − 4c2
1 − 3c2

2 − 6c2
0c

2
1 − 6c2

2c
2
1 + 5

)
, (5.1)

while the equations of motion for the matter profile functions are

1

A

(
ABr2 bI

0
′
)′

= 6c2
0b

I
0 − 4c2

1b
I
1

1

A

(
ABr2 bI

1
′
)′

= 8c2
1b

I
1 − 3c2

0b
I
0 − 3c2

2b
I
2

1

A

(
ABr2 bI

2
′
)′

= 6c2
2b

I
2 − 4c2

1b
I
1

1

A

(
AB c′0

)′
= c0

[
1

r2
(3c2

0 − 2c2
1 − 1) +

κ2

2κ1

∑

I

(bI
0)

2

]

1

A

(
AB c′1

)′
= c1

[
1

r2
(4c2

1 −
3

2
c2
0 −

3

2
c2
2 − 1) +

κ2

2κ1

∑

I

(bI
1)

2

]

1

A

(
AB c′2

)′
= c2

[
1

r2
(3c2

2 − 2c2
1 − 1) +

κ2

2κ1

∑

I

(bI
2)

2

]
. (5.2)

Note that, setting c0(r) = 0, the Higgs field equations imply

bI
0(r) = const − 2

3
bI
1(r) −

1

3
bI
2(r), (5.3)

and scaling the gauge field functions as

c1(r) = w0(r)/
√

2, c2(r) = w1(r)
√

2/3 , (5.4)

the SU(4) equations transform to the SU(3) ones when ca, b
I
a are replaced by wa, h

I
a, re-

spectively. However, there is the extra term −6/(2r4) in T 0
0 due to the U(1) field with

charge
√

6. Consequently, solutions do exist only if rH ≥
√

6α.

In the extreme case (i.e. for rH =
√

6α) the boundary conditions for the gauge and

Higgs functions at the horizon are

w0(rH) = w1(rH) = 1, hI
0(rH) = hI

1(rH) = 0 (5.5)

while the string coordinates in transverse space are

(x4
1(r) , x5

1(r)) = ~C

(x4
2(r) , x5

2(r)) = −1

3
~C +

1

3

(
2h1

0(r) + h1
1(r) , 2h1

0(r) + h1
1(r)

)

(x4
3(r) , x5

3(r)) = −1

3
~C +

1

3

(
−h1

0(r) + h1
1(r) , −h1

0(r) + h1
1(r)

)

(x4
4(r) , x5

4(r)) = −1

3
~C +

1

3

(
−h1

0(r) + 2h1
1(r) , −h1

0(r) + 2h1
1(r)

)
. (5.6)
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Figure 7: The three strings of the extremal SU(3) × U(1) solutions in the x4 − x5 plane for

α = 0.1, 0.5, 4, 0.6 and αmax = 0.656.

Here ~C = const which implies that the first string degenerates to a point.

We computed the extreme solutions for a wide range of values of α, except the limit

α → 0. In this region, only one branch has been found which terminates at the maximal

value αmax ≈ 0.656; while at the limit α → αmax the formation of a (second) degenerate

horizon at rdeg = 3α has been observed. In the outside region, rdeg < r < ∞, the limiting

solution corresponds to an extremal SU(2)×U(1) black hole and the U(1) field has charge

Q = 3 since 2hI
0(r) + hI

1(r) is constant; w0(r) vanishes identically; whereas w1(r) is non-

trivial. In the inside region, rH ≤ r < rdeg, the functions of the limiting solutions interpolate

continuously between their values at rH and rdeg. A degenerate horizon is formed since

by increasing the coupling to gravity the gravitational radius becomes of the order of the

core of the heaviest gauge field component. But the gauge field components with smaller

mass exist outside the degenerate horizon and that is why the transition to an extremal

SU(2) × U(1) black hole in the outside region occurs.

The formation of the degenerate horizon do affect the strings as shown in figure 7

which presents the three strings in the x4 − x5 plane for several values of α when ~C = 0.

Note that, for α small, the strings are similar to those of the globally regular solu-

tions; however as α increases the strings deform and in the limit α → αmax the pic-

ture changes drastically. For rdeg < r < ∞ the second string consists of a single point

(x4
2(∞), x5

2(∞)) which tends to the origin as r decreases from rdeg → rH. The third and

fourth string form straight lines for rdeg < r < ∞ and finally, merge when r → rdeg.

In the limit, r → rH these two strings merge and form a straight line passing through

origin.
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6. Conclusion

String theory assumes that space-time possess more than four dimensions and that these

dimensions are compactified on a scale of the Planck length. The extra dimensions offer a

solution to the hierarchy problem and assume that all known interactions (except gravity)

are confined on a three-dimensional brane of a (4+n)-dimensional spacetime. Therefore, it

would be of interest to construct our string and black hole solutions from the corresponding

Yang-Mills-Einstein equations defined in higher dimensions. It has been shown in [13], that

an (4 + n) dimensional Yang-Mills-Einstein model exists with n Higgs fields and n dila-

tons [13] as long as the metric and matter fields are independent of the extra coordinates.

Thus, it would be interesting to construct our solutions by solving the (4 + 2)-dimensional

Yang-Mills-Einstein equations.

Also, an open and more difficult task would be to derive the same solutions by solving

the corresponding N = 4 supergravity equations of motion.
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